Cold climates and the evolution of viviparity in reptiles: cold incubation temperatures produce poor-quality offspring in the lizard, Sceloporus virgatus

نویسندگان

  • CARL P. QUALLS
  • ROBIN M. ANDREWS
چکیده

Evolutionary origins of viviparity among the squamate reptiles are strongly associated with cold climates, and cold environmental temperatures are thought to be an important selective force behind the transition from egg-laying to live-bearing. In particular, the low nest temperatures associated with cold climate habitats are thought to be detrimental to the developing embryos or hatchlings of oviparous squamates, providing a selective advantage for the retention of developing eggs in utero, where the mother can provide warmer incubation temperatures for her eggs (by actively thermoregulating) than they would experience in a nest. However, it is not entirely clear what detrimental effects cold incubation temperatures may have on eggs and hatchlings, and what role these effects may play in favouring the evolution of viviparity. Previous workers have suggested that viviparity may be favoured in cold climates because cold incubation temperatures slow embryogenesis and delay hatching of the eggs, or because cold nest temperatures are lethal to developing eggs and reduce hatching success. However, incubation temperature has also been shown to have other, potentially long-term, effects on hatchling phenotypes, suggesting that cold climates may favour viviparity because cold incubation temperatures produce offspring of poor quality or low fitness. We experimentally incubated eggs of the oviparous phrynosomatid lizard, Sceloporus virgatus, at temperatures simulating nests in a warm (low elevation) habitat, as is typical for this species, and nests in a colder (high elevation) habitat, to determine the effects of cold incubation temperatures on embryonic development and hatchling phenotypes. Incubation at cold nest temperatures slowed embryonic development and reduced hatching success, but also affected many aspects of the hatchlings’ phenotypes. Overall, the directions of these plastic responses indicated that cold-incubated hatchlings did indeed exhibit poorer quality phenotypes; they were smaller at hatching (in body length) and at 20 days of age (in length and mass), grew more slowly (in length and mass), had lower survival rates, and showed greater fluctuating asymmetry than their conspecifics that were incubated at warmer temperatures. Our findings suggest that cold nest temperatures are detrimental to S. virgatus, by delaying hatching of their eggs, reducing their hatching success, and by producing poorer quality offspring. These negative effects would likely provide a selective advantage for any mechanism through which these lizards could maintain warmer incubation temperatures in cold climates, including the evolution of prolonged egg retention and viviparity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does viviparity evolve in cold climate reptiles because pregnant females maintain stable (not high) body temperatures?

Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soi...

متن کامل

Incubation regimes of cold-climate reptiles: the thermal consequences of nest-site choice, viviparity and maternal basking

Cold-climate reptiles show three kinds of adaptation to provide warmer incubation regimes for their developing embryos: maternal selection of hot nest sites; prolonged uterine retention of eggs; and increased maternal basking during pregnancy. These traits may evolve sequentially as an oviparous lineage invades colder climates. To compare the thermal consequences of these adaptations, I measure...

متن کامل

Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards.

The evolution of viviparity is a key life-history transition in vertebrates, but the selective forces favoring its evolution are not fully understood. With >100 origins of viviparity, squamate reptiles (lizards and snakes) are ideal for addressing this issue. Some evidence from field and laboratory studies supports the "cold-climate" hypothesis, wherein viviparity provides an advantage in cold ...

متن کامل

Low oxygen: a constraint on the evolution of viviparity in reptiles.

The evolution of reptilian viviparity (live bearing) from oviparity (egg laying) is thought to require transitional stages of increasingly longer periods of embryonic development in utero, that is, longer periods of egg retention by the gravid female. Studies on sceloporine lizards demonstrate that embryonic responses to egg retention that is extended beyond the time of normal oviposition range...

متن کامل

Incubation under climate warming affects learning ability and survival in hatchling lizards.

Despite compelling evidence for substantial individual differences in cognitive performance, it is unclear whether cognitive ability influences fitness of wild animals. In many animals, environmental stressors experienced in utero can produce substantial variation in the cognitive abilities of offspring. In reptiles, incubation temperatures experienced by embryos can influence hatchling brain f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999